Backwards Design, Ecology, and Weaving a Course with HHMI BioInteractive Resources

Tara Jo Holmberg, tholmberg@nwcc.edu
Professor of Biology and Environmental Science
Northwestern Connecticut Community College

Introduction:
Backwards course design was used in an undergraduate introductory field ecology course to better align course goals, learning objectives, and assessments. The course is now flipped; in-class sessions are optimized for active learning and data-centric lessons. Various themes are used as touchstones for students to return to: evolution, natural selection, biodiversity, and conservation. Because of the richness and active nature of the resources, a variety of HHMI BioInteractive’s activities are woven throughout the course to help students visualize and analyze the phenomena being discussed.

Define Course Learning Goals:
Provide students with an understanding of basic ecological principles including:
- constant change of Earth and species over time;
- natural course of extinction versus present events;
- processes of adaptation, natural selection, mutation, genetic drift, and evolution;
- interactions of organisms with biotic and abiotic environment;
- change in ecological communities over time;
- measures of biodiversity and complexity;
- relationship of ecology and (wicked) environmental issues.

Identify Measurable Objectives (Selection):

1. Understand the scientific method to investigate a question:
2. Define ecology, population, community, and ecosystem:
3. Compare and contrast ecology to the other natural and physical sciences:
4. Compare and contrast various major kingdom’s adaptations to the environment:
5. Identify human and animal impact on the ecosystem and biotic component, and vice versa:
6. Preparing, using two populations and community structure sampling and analysis, qualitatively and quantitatively, both direct and indirect:
7. Distinguish between the populations, characteristics, and consequences of both sexual and asexual reproduction:
8. Analyze the various types of species interactions that occur in communities:
9. Explain why communities must be understood and evaluated:
10. Identify human activities, genetic, APH, and natural selection that affect biodiversity:

1. Explain succession:
2. Discuss the factors of population growth and examine the process of population growth:
3. Identify, analyze, and discuss the major causes of global environmental change, their impact on life and possible solutions:
4. Compare the resistance and recovery of different communities to different environmental changes:
5. Apply population genetics to a real-world habitat:
6. Explain the importance of field, laboratory, and mesocosm experiments in ecology:
7. Interpret and draw appropriate conclusions from the analysis of data sets from field and from models:
8. Compare and contrast the various processes that form communities:
9. Use the model to demonstrate the major ecosystem of New England and the planet:
10. Describe the role of ecology in conservation methods.

Align Assessments:
This course uses multiple measures for assessment including:
- in-class projects/activities:
- active flipped homework:
- field labs/reports:
- research writing:
- midterm/final exam:
- numerous quizzes.

Conclusion:
Because this has only been in place for less than 2 years, insufficient data has been collected to do a pre-post design statistical analysis. Students however, are doing at least as well as former classes in terms of midterm and final grades achieved using similar assessments in addition to the quality of their quizzes and writing assignments.

Acknowledgements:
Sharon Gucki and the HHMI BioInteractive Ambassadors for their feedback on this concept!