Extending The Imatinib Paradigm

Where Has Imatinib Worked?

- Tumors in which ABL, KIT, or PDGFR have a critical role in the growth and survival of the cancer
 - CML (ABL)
 - GIST (KIT)
 - HES (PDFGR)

Where Hasn’t Imatinib Worked?

- Brain tumors
- Breast cancer
- Prostate cancer
- Melanoma
- Numerous others
 - None of these tumors are critically dependent on a target of imatinib

What Lessons Can Be Learned From the Clinical Trials of Imatinib?
Target Expression Versus Response

Expression Versus Response

<table>
<thead>
<tr>
<th>Target Frequency</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>25%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>10%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Expression Versus Response

<table>
<thead>
<tr>
<th>Target Frequency</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 patients</td>
<td>100%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>25%</td>
<td>60%</td>
</tr>
<tr>
<td>100 patients</td>
<td>10%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Imatinib Responses in Advanced Malignancies

<table>
<thead>
<tr>
<th>Disease</th>
<th>Target Expression</th>
<th>Partial Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CML blast crisis</td>
<td>Bcr-Abl + 100%</td>
<td>50-60%</td>
</tr>
<tr>
<td>GIST</td>
<td>KIT + > 90%</td>
<td>50-60%</td>
</tr>
</tbody>
</table>

Expression of a molecular target correlates with response to an agent directed against that target.
Is Expression Sufficient to Predict Response?

<table>
<thead>
<tr>
<th>Target Expression</th>
<th>Target Activation</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Activation Versus Response

<table>
<thead>
<tr>
<th>Target Expression</th>
<th>Target Activation</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Activation Versus Response

<table>
<thead>
<tr>
<th>Target Expression</th>
<th>Target Activation</th>
<th>Target Response Rate</th>
<th>Observed Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>100 pts 100%</td>
<td></td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Response to Imatinib in GIST Patients

M. Heinrich, J. Fletcher, et al.
PDGFR Activating Mutations in GIST

- 6/16 (37.5%) wild-type KIT patients had PDGFRA activating mutations in two different exons

Response to Imatinib in GIST Patients

Expression of a molecular target does not guarantee a response to an agent that modulates the target

Response to Imatinib in GIST Patients

PDGFR Activating Mutations in GIST

- 6/16 (37.5%) wild-type KIT patients had PDGFRA activating mutations in two different exons
- One set of mutations was imatinib sensitive
- 2/3 patients had PRs

Gefitinib and Erlotinib
- Inhibit EGF receptor kinase
 - EGFR broadly expressed in cancer
 - 10-20% response rate in advanced non-small lung cancer
 - No correlation with EGFR expression

Gefitinib and Erlotinib
- Inhibit EGF receptor kinase
 - EGFR broadly expressed in cancer
 - 10-20% response rate in advanced non-small lung cancer
 - No correlation with EGFR expression
 - Female, non-smokers, bronchoalveolar histology

Gefitinib and Erlotinib
- Responding patients have EGFR mutations
 - More sensitive to inhibitors than wild-type receptor
Gefitinib and Erlotinib
- Responding patients have EGFR mutations
 - More sensitive to inhibitors than wild-type receptor
- Careful study of subsets of patients may reveal important insights

What If The Response to a Molecularly Targeted Agent Is Low?
- Is the target expressed?
- Is the target modulated by the agent?
- Is the target critical to the growth or survival of the tumor?
- Is there a subset of patients who respond well?
Lessons Learned From Clinical Trials With Imatinib

IT'S THE TARGET!

Good Target + Good Drug

Lessons Learned From Clinical Trials With Imatinib

IT'S THE TARGET!

Good Target + Good Drug

= Good Results

What Makes BCR-ABL Such an Ideal Target?

• Causative molecular abnormality of CML
• Sole oncogenic event early in the disease

What Makes BCR-ABL Such an Ideal Target?

• Ease of selection of patients for clinical studies based on the presence of the target
• Ph chromosome – BCR-ABL
Why is KIT an Ideal Target in GIST?

- KIT mutations are seen in early, incidental tumors
- KIT mutations are acquired before cytogenetic abnormalities
- Familial syndromes of GIST have germline KIT mutations

Lessons Learned From Clinical Trials With Imatinib

Old News

Treatment earlier in the course of a disease yields better responses

Responses by Phase of Disease

![Graph showing responses by phase of disease]

Translating the Success of Imatinib to Other Malignancies

- Identify the appropriate therapeutic targets
- Early molecular pathogenetic events
- Treat early in the course of the disease
- Develop reliable techniques for early detection
- Match the right patient with the right drug
The 21st Century

- Identification of the molecular pathogenetic events in all cancers
- Development of improved diagnostic/imaging techniques
- Improved methods of drug discovery

The 20th Century

Leading causes of mortality

1900
1) Pneumonia
2) Tuberculosis
3) Enteritis
4) Heart Disease
5) Stroke
6) Liver Disease

2000
1) Pneumonia
2) Tuberculosis
3) Enteritis
4) Heart Disease
5) Stroke
6) Liver Disease

The 21st Century

- Identification of the molecular pathogenetic events in all cancers
- Development of improved diagnostic/imaging techniques
- Improved methods of drug discovery
- Understanding of an individual’s cancer risk based on genetic analyses

The 20th Century

Leading causes of mortality

1900
1) Pneumonia
2) Tuberculosis
3) Enteritis
4) Heart Disease
5) Stroke
6) Liver Disease

2000
1) Heart Disease
2) Cancer
3) Stroke
4) COPD
5) Accidents
6) Pneumonia
Factors Leading to Eradication and Treatability of Infections

- Improved sanitation and refrigeration
- Antibiotics
- Vaccination

Factors Leading to Eradication and Treatability of Infections

- Improved sanitation and refrigeration
- Antibiotics
- Vaccination

Factors Leading to Eradication and Treatability of Infections

- Improved sanitation and refrigeration
- Antibiotics
- Vaccination

Factors Leading to Eradication and Treatability of Infections

- Improved sanitation and refrigeration
- Antibiotics
- Vaccination

Factors Leading to Eradication and Treatability of Infections

- Improved sanitation and refrigeration
- Antibiotics
- Vaccination

The 21st Century

Broad-based approach to cancer

The 21st Century

Broad-based approach to cancer

Specific therapies directed at critical targets
The 21st Century
Broad-based approach to cancer
- Specific therapies directed at critical targets
- Prevention and early diagnosis

The 21st Century
Broad-based approach to cancer
- Specific therapies directed at critical targets
- Prevention and early diagnosis
- Immune modulation

Acknowledgements
Novartis
International Imatinib Study Group
Funding agencies