Xs and Os:
The Tic-Tac-Toe of Sex Determination

A Lesson to Supplement the
2001 HHMI Holiday Lectures on Science,
The Meaning of Sex: Genes and Gender
Xs and Os:
The Tic-Tac-Toe of Sex Determination

A Lesson to Supplement the
2001 HHMI Holiday Lectures on Science,
The Meaning of Sex: Genes and Gender

INTRODUCTION

A dizzying array of sex-determination mechanisms exists in the biological world. In some organisms, gender is established at conception; other organisms rely on the environment; and in still others, the genetic control of basic sex constitution can be affected by environmental factors to modify subsequent differentiation.

In this structured-inquiry activity, teams of students evaluate the evidence for how sex is determined in a variety of creatures ranging from a freshwater Amazonian turtle to an invasive North American weed and the common house mouse. Like scientists, they must devise hypotheses to account for the available evidence and share their findings with their peers.
THE “JIGSAW”: A TOOL FOR PEER TEACHING

The activity uses a “jigsaw” format that allows students to research and teach parts of the lesson. The class is divided into student teams (called Expert Groups), and each Expert Group researches one organism. The class then reorganizes into “Home Groups” of students, each of whom studied a different organism. Each student in the Home Group teaches the other students in the group about his or her organism. Themes pertaining to sex determination, evolution, gene regulation, and the nature of science may emerge for discussion.

OBJECTIVES

At the end of this activity, students should be able to

• compare and contrast the wide variety of sex-determination strategies that have evolved in multicellular organisms;
• analyze data and synthesize explanations that reflect the available evidence;
• appreciate human sex-determination mechanisms in context, as one of many such schemes in nature;
• describe the scientific value of model organisms; and
• comprehend one aspect of a subject in detail and teach it to their peers.

CLASSROOM CONNECTIONS

The activity can be integrated into the general biology curriculum or used with AP/honors/IB biology or with a comparative anatomy and physiology course. The activity addresses many National Science Education Standards in content and teaching.

The lesson can be used alone or in conjunction with the 2001 Holiday Lectures on Science. It would be a good tie-in to the following lecture topics:

• How human gender is determined (first half, Lecture One, Dr. David Page)
• Parthenogenesis in a vertebrate species (first half, Lecture One, Dr. Page)

• The role of \(xol-1 \) and \(X \) signal element genes in \(C. \ elegans \) (Lecture Two, Dr. Barbara Meyer)

• Evolutionary changes in the human Y chromosome (first half, Lecture Four, Dr. Page)

STUDENTS’ PRIOR KNOWLEDGE

Before participating in this activity, students should know

• what a karyotype is and how it is prepared,

• how to distinguish between genes and chromosomes and between autosomes and sex chromosomes,

• how to interpret a simple pedigree, and

• how to use Punnett squares to solve genetics problems involving autosomal or sex-linked characteristics.
MATERIALS CONTAINED IN THIS LESSON

Seven sets of cards (one set for each organism includes one Critter Card, one Karyotype Card, and three Observation Cards)

One overhead transparency master: Template for Xs and Os: the Tic-Tac-Toe of Sex Determination

One overhead transparency master: Expectations for Jigsaw Lessons

A Teacher Reference Chart

MATERIALS TO SUPPLY

Student journals

Baskets or other containers to hold cards

Classroom map (overhead or butcher paper) showing meeting locations for Expert Groups (optional)
DIRECTIONS FOR DOING THE ACTIVITY

This lesson was designed for a class of 35 students, using seven Expert Groups of five. If you do not have 35 students in your class (or if you have a class with students of varying ability), several options for doing the activity are given in Form Expert Groups.

Here are the necessary steps (the time allocations assume seven Expert Groups):

- Explain the jigsaw. Communicate your overall expectations for the lesson by displaying the overhead transparency Expectations for Jigsaw Lessons. (5 minutes)
- Engage students with thought-provoking questions. (20 minutes)
- Form Expert Groups for the group researching phase. (20 minutes)
- Reorganize the class into Home Groups for the group teaching phase, followed by discussion and processing (70–80 minutes).
- Assess students’ knowledge. (time will vary; can be completed in or out of class)
Expectations for Jigsaw Lessons

As a member of your Expert Group:

FOCUS on your task. Assist the other Experts in figuring out what you have to do.

ACHIEVE understanding. Take notes on the Expert Group cards. Be able to explain them in your own words.

RECOGNIZE that your work will be important to others.

As a member of your Home Group:

Take turns teaching. When others are teaching, pay close attention to each of the members in your Home Group.

When it is your turn to teach, share your information verbally—do not just exchange journals. Show enthusiasm!

Make sure that the other members of your Home Group understand you.
Engage Students

1. Ask students the following questions (brackets < > denote student responses):
 - When you were born, after the doctor and your parents determined that you were healthy, what is the next question your parents probably asked? <“Is it a boy or a girl?”>
 - How would the doctor know? <external genitalia>
 - Before a person is born, can one tell by looking what the sex of a fetus is? of an embryo? of a zygote?
 - How and when is sex determined, not just in humans but also in other mammals, other animals, or even in plants?

2. Have students write in their journals the following task statement for the jigsaw: Let’s discover how sex is determined in a variety of organisms.

3. Show the overhead transparency, Template for Xs and Os: The Tic-Tac-Toe of Sex Determination, and allow time for students to copy it into their journals. Encourage students to spread the table over multiple pages. Pronounce each organism’s common name and scientific name aloud with your students.
Template for Xs and Os: The Tic-Tac-Toe of Sex Determination

<table>
<thead>
<tr>
<th>Species of organism</th>
<th>Sex-Related Info. in Critter Card</th>
<th>Sex-Determination Info. in Karyotype Card</th>
<th>Sex-Determination Hypothesis Consistent with ALL Cards, Including Observation Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoon worm (Bonellia viridis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White campion (Silene latifolia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse (Mus musculus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit fly (Drosophila melanogaster)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow-spotted river turtle (Podocnemis unifilis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematode (Caenorhabditis elegans)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken (Gallus domesticus)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form expert groups

1 a. In a class of 35, have students count off from 1 to 7; orchestrate the counting so that a group of students having numbers 1 through 7 sits close to each other. That way, when students reorganize into Home Groups, they can simply return to their original seats.

b. Before students change seats, have all the 1s raise their hands, all the 2s, all the 3s, and so on. These are the Expert Groups. If you have drawn a simple map, post it on the board or on an overhead transparency to show the locations (widely spaced, if possible) around the classroom in which the Expert Groups are to meet.

c. Have one member from each Expert Group come to the materials station in the classroom to pick up the basket (same number as group) with his or her group’s cards and bring it to the designated location. You may want each student to receive one card and lead the discussion on that card’s information.

2 a. Tell students to read the cards silently and work in the following order: They should examine the Critter Card first, then the Karyotype Card, and finally, the Observation Cards.

b. Have group members analyze and discuss the information in their cards. Your job is to keep time and to serve as a resource person for each group as needed. Listen to the discussions occurring in each group.

c. Remind them to record relevant information (see column titles!) in their row of the chart. The final column is the place where they synthesize an explanation for how sex is determined in their organism that is consistent with all the information in their cards.

d. It is imperative that every Expert Group member understands
what he or she needs to teach and how to teach it. Expert Group members have a responsibility to help each other before the group disbands. Each Expert Group member is expected to understand and synthesize the information from all cards.

3. Ask a member from each Expert Group to return the group’s card basket to the materials table when the group has completed its task.

Teaching tip: You have an opportunity to spot-check the quality of the work of any Expert Group that finishes early. Pick up the journal of any student in the group and use it to question the group about what its members have concluded and how they arrived at their conclusions.

To adjust the activity for different class sizes and classes of varying abilities:

- Use all seven organisms but have fewer students for each Expert Group. For example, in a class of 28 students have four students in each group.
- Choose fewer than seven organisms but maintain an Expert Group of five students.
- Choose three organisms but have duplicate sets of cards (six sets). This set-up allows two expert groups to compare hypotheses.
- Have small Expert Groups stay together and rotate through the seven information stations.
- Have each Home Group member become an expert on two species.
- Have a member of each Expert Group teach in front of the entire class.
- For classes with varying abilities, choose organisms based on level of difficulty:

<table>
<thead>
<tr>
<th>Easy</th>
<th>Moderate</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoon worm, Bonellia viridis</td>
<td>Fruit fly, Drosophila melanogaster</td>
<td>Chicken, Gallus domesticus</td>
</tr>
<tr>
<td></td>
<td>White campion, Silene latifolia</td>
<td></td>
</tr>
</tbody>
</table>
Reorganize

1. Instruct students to return to their original seats. Point out the groups of students with numbers 1–7. These are Home Groups. In a class of 35, there will be five Home Groups. Be sure students move their seats toward each other and speak clearly so that they can hear what each other has to say.

2. Tell students that Home Group members should take turns teaching about the organisms on which they became experts. As before, your job is to be timekeeper. As a general rule of thumb, each student in the Home Group needs 5–10 minutes for teaching. Resist the temptation to elaborate on or correct information while the students teach. There will be opportunities later to ensure the accuracy of the knowledge.

Teaching tip: A group may be “short” a teacher (because of an odd number of people in the class or due to absence). Borrow a teacher for them from a group that finishes early, or be a “substitute teacher” yourself.

Teaching tip: Borrow a journal from one student in each of the four Home Groups before conducting the discussion (for example, overnight, or between days of the lesson). Reassure these students that their journals will not be “graded.” Review their jigsaw charts for missing or inaccurate information to alert you to particular points to visit in the discussion. You might also take the opportunity to photocopy a good chart as a student-friendly key for students with visual learning styles who want to see as well as listen to a complete set of responses from the jigsaw.

3. Engage the class in a discussion of the content learned. Highlight the similarities among, and differences between, sex-determination strategies. Questions for discussion should include the following:
• In which organism(s) does the presence or absence of a gene on a particular chromosome govern gender?
• In which organism(s) is sex determined by the ratio between gene products of the X chromosome(s) and gene products of autosomes?
• In which organism(s) does an environmental factor determine sex?

Follow every student response with, “How do you know?” See the “Teacher Reference Chart” for other discussion ideas.

4. Allow students to debrief the format of the lesson, particularly if this was their first jigsaw. Give them an opportunity to discuss how well the Expert and Home Groups functioned—the kinds of interactions that occurred (positive and negative), whether the members felt they were being listened to, and how successful they were in accomplishing the task.
Assessment

Looking at a sample journal from each Home Group is one kind of formative assessment. For summative assessment, you could do the following:

- Ask the Home Groups to summarize what they learned in writing.
- Ask the Home Groups to orally summarize what they learned.
- Administer a short quiz that the members of each Home Group take together or that each student takes independently, with or without journals. See sample questions for assessment that follow.
- Organize the class into six Expert Groups at the outset instead of seven in order to save one set of cards. Then, after the jigsaw, give each student the seventh set of cards to analyze.

SAMPLE QUESTIONS FOR ASSESSMENT

1. Categorize each of the organisms in the activity by the trigger for their sex determination (environment, X:A ratio, or chromosome with sex-specific gene).

2. In which organisms were male and female karyotypes identical? What conclusion might be drawn about their common sex-determination trigger?

3. Suggest a mechanism that might account for temperature-dependent sex determination? Hint: the operation of which organic molecules is greatly influenced by temperature?

4. Using Venn diagrams, clustering, or another kind of graphic organizer, illustrate the evolutionary relationships between each of the seven organisms in this activity. Include detail to the level of Order when possible.

5. In both *C. elegans* and *D. melanogaster*, the X:A ratio determines sex. Compare and contrast the details of sex determination in
these two species. Try to give at least two similarities and two
differences.

6. What conclusions about avian sex determination might be drawn
from the discovery in the future of a ZO rooster?

7. What evidence supports the idea that the Y chromosome of
Drosophila does not confer maleness?

8. What approach or strategy could biologists use to identify the
male-inducing chemical in spoon-worms?

9. How might molecular biology techniques be used to confirm that
certain genes on the Y chromosome of _S. latifolia_ block carpel
development?

10. What conclusion about avian sex determination might be drawn
from the 1933 observation of a diploid ZZW male bird? What is
wrong with basing conclusions on single observations? Should
a single observation made today (and not in 1933) carry more
weight? Explain.

11. Propose a follow-up experiment to one of the Observation Cards
for one of the organisms in the activity. Be sure to explain what
should be done and why.

12. Predict what the karyotype of the spoon worm (_Bonellia viridis_)
might look like.

13. How do organisms in which males and females have unequal
numbers of a sex chromosome compensate for an imbalance in
gene dosage (for example, female mice having twice the gene prod-
uct from the X chromosome than male mice)? In what other organ-
isms in this activity might some form of “dosage compensation” be
expected?

14. If you could have a six-week internship in a research lab learning
about the genetics of one of these seven organisms in greater
detail, which organism would you want to study, and why?
Applications of National Science Education Standards (National Academy of Sciences, 1996)

CONTENT STANDARDS

A. As a result of activities in grades 9–12, all students should develop abilities necessary to do, and understandings about, scientific inquiry.
 • Formulate and revise scientific explanations and models using logic and evidence,
 • Recognize and analyze alternative explanations and models,
 • Communicate and defend a scientific argument.

C. As a result of activities in grades 9–12, all students should develop understanding of
 • The cell
 • Molecular basis of heredity
 • Biological evolution
 • Behavior of organisms

G. As a result of activities in grades 9–12, all students should develop understanding of
 • Nature of scientific knowledge
 • Historical perspectives

TEACHING STANDARDS

B. Teachers of science guide and facilitate learning. In doing this, teachers
 • Focus and support inquiries while interacting with students
 • Orchestrate discourse among students about scientific ideas
 • Challenge students to accept and share responsibility for their own learning.
C. Teachers of science engage in ongoing assessment of their teaching and of student learning. In doing this, teachers
 • Use multiple methods and systematically gather data about student understanding and ability.

E. Teachers of science develop communities of science learners that reflect the intellectual rigor of scientific inquiry and the attitudes and social values conducive to science learning. In doing this, teachers
 • Nurture collaboration among students
 • Structure and facilitate ongoing formal and informal discussion based on a shared understanding of rules of scientific discourse.
Credits

CONCEPT DEVELOPMENT:
Suzanne Black, Inglemoor High School, Kenmore, Washington
Dennis Liu, Ph.D.
Donna Messersmith, Ph.D.
Satoshi Amagai, Ph.D.

AUTHOR:
Suzanne Black

EDITOR:
Judith Saks

COPYEDITOR:
Kathy Savory

DESIGNER:
Martine Bernard Design

TEACHER REVIEWERS:
Myrtle Brijbasi, Suitland High School, Forestville, Maryland
Nancy Cooke, Newbury Park High School, Newbury Park, California
Paula Rowe, James Hubert Blake High School, Silver Spring, Maryland

SCIENTIFIC REVIEWERS:
Sarah Grant, Ph.D., University of North Carolina at Chapel Hill
Philip Meneely, Ph.D., Haverford College
Brian Oliver, Ph.D., Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
John Pilger, Ph.D., Agnes Scott College
David Zarkower, Ph.D., University of Minnesota School of Medicine

Acknowledgments

Several scientists made multiple, generous contributions to the development of this lesson. Special thanks to Dr. Pat Edwards, University of Oregon; Dr. Rene Hessling, University of Osnabrzeck, Germany; Dr. F. Janzen, Iowa State University; Dr. Charles Laird, University of Washington; doctoral student Jennifer Powell, University of California, Berkeley; Dr. Leonore Reiser, Stanford University; and Dr. Paul Szauter, The Jackson Laboratory.
Image and Figure Credits

GENERAL
The American Journal of Botany

SPOON WORM
Dr. Rene Hessling

CHICKEN

MOUSE
The Jackson Laboratory, Mouse Genome Informatics
Ellen C. Akeson and Muriel T. Davisson, Ph.D.

TURTLE

Cytogenics, Medical and Scientific Publishers

Society of the Study of Amphibians and Reptiles

WHITE CAMPION
Wisconsin State Herbarium and Robert W. Freckman, University of Wisconsin, Stevens Point

NEMATODE
Dr. Maria Elena Gallegos, University of California, San Francisco

FRUIT FLY
References

GENERAL

CHICKEN

Squire, R. Personal communication (January 10, 2002) (rsquire@stahl.upr.clu.edu).

University of Illinois Extension. Incubation and embryology resources Web site (http://www.urbanext.uiuc.edu/eggs/res00-index.html).

FRUIT FLY AND NEMATODE

Powell, Jennifer. Personal communication (December 5, 2001, and January 2, 2002) (powelljr@uclink4.berkeley.edu).

MOUSE

Szauter, P. Personal communication (January 11 and 12, 2002; February 7 and 8, 2002) (mgi-help@informatics.jax.org).

SPOON WORM

Hessling, R. Immunohistochemical analysis of the development and organization of the nervous system in Echiura (http://www.biologie.uni-osnabrueck.de/speziellezoologie/Hessling/index.html).

Hessling, Rene. Personal communication (January 10 and 12, 2002; February 8, 2002) (hessling@biologie.uni-osnabrueck.de).

TURTLE

Janzen, F. Personal communication (January 9 and 11, 2002) (fjanzen@iastate.edu).

WHITE CAMPION

Reiser, L. Personal communication (January 10 and 15, 2002) (lreiser@acoma.stanford.edu).

USDA Web site entry for *S. latifolia* (http://plants.usda.gov/cgi_bin/plant_profile.cgi?symbol=SILAA3).

Wetter, Mark. Personal communication (February 22, 2002) (mawetter@facstaff.wisc.edu).